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Abstract. Most of the discrete wavelet families are periodic dyadic: they live on the
multiresolution sequence{Z/2j }j∈Z of lattice backgrounds at different scales. We present here a
construction of wavelet family based on a sequence of aperiodic discretizations ofR. At a given
scale, this discretization is the point set of nodes of the Fibonacci chain, a well known stone-inflation
cut and project model for one-dimensional quasicrystals. Corresponding multiresolution analysis
and the elementary example of the Haar system are presented.

1. Introduction

Dyadic wavelets are the most commonly studied and used in discrete wavelet analysis.
Excellent textbooks devoted to the subject exist on the market. We refer in particular to [1],
for the notation and some of the standard results. The dyadic wavelet analysis is based
on the following increasing sequence of periodic discretizations ofR: · · · ⊂ Z/2j−1 ⊂
Z/2j ⊂ Z/2j+1 ⊂ · · ·. We present here an example of discrete wavelet analysis where
the multiresolution involves an aperiodic irrational discretization of the set of real numbers.
The scaling factor is the square of the golden ratio,τ 2 = (3 +

√
5)/2, and at a given scale,

say the zeroth scale, the discretization set is the set of nodes of the Fibonacci chain. The
latter can be obtained from the square latticeZ2 by cut and project, a method familiar to
quasicrystallographers. It is equivalently obtained from substitution rules. This work is in
a sense a continuation of previous tentative attempts at construction of wavelets adapted to
simple quasicrystalline models [2]. More precisely, in the first item of [2] a construction was
presented of the Haar system adapted to the sequence{Zτ /τ j }j∈Z of aperiodic discretizations
of the real line with scaled versions of the set of ‘tau-integers’. In relation to that, the novelty
of the present approach has two aspects. Firstly, the construction is based on the Fibonacci
chain. This is a stone-inflation tiling of the real line with no privileged origin (contrary to
the symmetricZτ = −Zτ ). Secondly, we properly define a multiresolution analysis withtwo
scaling functions (one occasionally saysfather wavelets), one per (‘long’ or ‘short’) type of tile,
and this prevents inconsistencies in setting up the related scaling equations (see equation (3.5)
below). In the meantime, our construction rests upon affine-linear invariance properties of
the Fibonacci chain, and this provides a nice illustration of the algebraic approach initiated by
Moody and Patera in [3] (see (2.4)–(2.7) below).

The construction of the Fibonacci chain by substitution will be recalled in the next section,
together with the main algebraic properties of this toy model of quasicrystals. In section 3, we
shall define what we mean by multiresolution analysis based on the infinite sequence of scaled
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Figure 1.

versions of the Fibonacci chain, and we shall describe the scaling conditions from which it
becomes possible to build up the corresponding wavelet family. The last section is devoted to
the Haar system which, although elementary, provides us with a nice illustration of the general
construction.

2. The sequence of Fibonacci discretizations

The ‘zero’ scale3 ≡ 30 of what we mean by Fibonacci discretization is the set of left-hand
ends of the two-letter Fibonaccci tiling of the line. This tiling originates from the substitution

ς :

{
L→ LLS

S → LS
(2.1)

for which the substitution matrix(
2 1
1 1

)
has eigenvaluesτ 2 = (3 +

√
5)/2 and 1/τ 2 = (3− √5)/2. Therefore, the Pisot algebraic

integerτ 2 is the scaling factor in the self-similar properties ofς . Let us associate to the letters
L andS the tiles of length 1 and 1/τ respectively. Starting from the origin withL on the right
and withS on the left, we apply the substitutionς∞ to the former on its right and to the latter
on its left. We thus get the point set3 as the set of left-hand ends of this tiling of the line. The
first pieces of this tiling around the origin are shown in figure 1.

In algebraic terms, the set3, as a subset of the extension ringZ[τ ], is the set of all numbers
m+nτ ,m, n ∈ Z, such that their respective Galois conjugatesm−n(1/τ) lie within the semi-
open interval (i.e. the cut and project window) [0, τ 2). We shall here adopt the notations of
Moody and Patera [3]:3 = 6[0,τ 2). Note the stone-inflation self-similarity

τ 23 = 6[0,1) ⊂ 3 (2.2)

a crucial property for our wavelet purposes. Indeed, the ‘τ 2-adic’ multiresolution is based on
the increasing sequence of discretizations ofR:

· · · ⊂ 3/τ 2(j−1) ⊂ 3/τ 2j ⊂ 3/τ 2(j+1) ⊂ · · · . (2.3)

Actually, equation (2.2) is a particular case of the general affine-linear invariance property
enjoyed by the point set3:

τ 23 +6[0,τ ] = 3. (2.4)

We now consider the partition of3 into two subsets,3 = 3L ∪3S , where3L (resp.3S) is
the set of left-hand ends of large (resp. short) tiles. Explicitly

3L = 6[0,τ ) 3S = 6[τ,τ 2). (2.5)

Similarly to (2.2), these subsets have the following respective affine-linear invariances:

τ 23L +6[0,1] = 3L τ 23L +6[τ,2) = 3S (2.6)

τ 23S +6[−1/τ,1/τ ] = 3L τ 23S +6[1,τ ] = 3S. (2.7)
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Table 1.

µ\ν L S

L 6[0,1] 6[τ,2]

S 6[0,1+1/τ3] 6[τ,τ+1/τ ]

3. The Fibonacci multiresolution

The multiresolution analysis of L2(R) which is based on the above Fibonacci discretization of
R is the increasing sequence of closed subspaces

· · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · (3.1)

obeying the following set of requirements.

• Density

∩jVj = {0} ∪jVj = L2(R). (3.2)

• Scaling connection

f (x) ∈ Vj ⇐⇒ f (τ 2x) ∈ Vj+1. (3.3)

• Scaling functions
There exist two functionsφL, φS ∈ V0, the so-calledfather wavelets, such that the set

{φL(x − l), φS(x − s)}l∈3L,s∈3S (3.4)

is an orthonormal basis ofV0 (or, at least, a Riesz basis).

The scaling equation resulting from the embeddingV0 ⊂ V1 reads

φµ(x + δµS/τ) = τ 2
∑
l∈T µL

cµlφL(τ
2x − l) + τ 2

∑
s∈T µS

cµsφS(τ
2x − s) µ ∈ {L, S}. (3.5)

The presence of the translation parameterδµS/τ in the above is due to the fact that 0 is element
of3L whereas−1/τ is element of3S . Related to this remark, the admissible translation sets
T µν appearing here are defined consistently toφµ(x − ωµ) ∈ V0 ⊂ V1, ωµ ∈ 3µ, µ ∈ {L, S},

T µν = {ων |ων + δµSτ + τ 23µ ⊂ 3ν}. (3.6)

They are given in table 1.
Equation (3.5) can be the departure point for ‘bare-hand’ constructions of father wavelets

in the spirit of chapter 4 in [1]. Indeed, if we restrict the values ofx to the sets−3L and
−3S respectively, we obtain a closed linear system precisely because of the nature of theT µν
coupled to the affine-linear invariances (2.6) and (2.7):

φµ(−ωµ) = τ 2
∑
l∈T µL

cµlφL(−τ 2ωµ − l = −l′) + τ 2
∑
s∈T µS

cµsφS(−τ 2ωµ − s = −s ′)

µ ∈ {L, S}. (3.7)

The Fourier transform of equation (3.5) can be given a matrix form involving the vector
function8̂T(ξ) = (φ̂L(ξ), φ̂S(ξ)) in reciprocal space:

8̂(ξ) = M0

(
ξ

τ 2

)
8̂

(
ξ

τ 2

)
=
∏
j>1

M0

(
ξ

τ 2j

)
8̂(0). (3.8)

The matrixM0(ξ) has almost-periodic entries,

m0µν(ξ) =
∑
ων∈T µν

cµωνe
−2π i(ων+δµSτ)ξ . (3.9)
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Equation (3.8), besides uniform convergence requirements, implies thatM0(0) has eigenvalue
1 with eigenvector8̂(0). The orthonormality and the completeness of the set (3.4) is
reformulated in the reciprocal Fourier space as follows:∫ ∞
−∞

dξ

(
e−2π ilξ 0

0 e−2π isξ

)
8̂(ξ)8̂(ξ)†

(
e2π il′ξ 0

0 e2π is ′ξ

)
=
(
δll′ 0
0 δss ′

)
. (3.10)

The meaning of (3.10) is that the Fourier transforms of the entries of the Hermitian matrix

8̂(ξ)8̂(ξ)†, namely|φ̂L(ξ)|2, ¯̂φL(ξ)φ̂S(ξ), |φ̂S(ξ)|2, vanish respectively on the point sets:

(3L −3L) \ {0} = 6(−τ,τ ) \ {0} (3S −3L) = 6(0,τ 2)

(3S −3S) \ {0} = 6(−1,1) \ {0}. (3.11)

The waveletsψL,ψS , occasionally namedmother wavelets, are such that all their
respective translates in{ψL(x − l), ψS(x − s)}l∈3L,s∈3S form an orthonormal basis ofW0

in V1 = V0⊕⊥W0. Their determination can be performed via the reciprocal space formulation
involving the vector9̂T(ξ) = (ψ̂L(ξ), ψ̂S(ξ)).

9̂(ξ) = M1

(
ξ

τ 2

)
8̂

(
ξ

τ 2

)
. (3.12)

The matrixM1(ξ) has almost-periodic entries too. The questions to address now are the
following:

• What are the operational conditions to be imposed onM0(ξ) andM1(ξ) in view of solving
this problem?
• Related to this, to what extent can we make use of the concept of Meyer ‘ε-dual’ sets
T ∗ε [4] corresponding to the setT of frequencies of various almost-periodic functions
involved in the above formulation?

Once these points are clarified, we shall be able to assert that the set{τ jψL(τ 2j x −
l), τ jψS(τ

2j x − s)}l∈3L,s∈3S,j∈Z is the expected orthonormal wavelet basis ‘living’ at the
corresponding scale on the discretization sequence (2.3).

4. The Fibonacci Haar system

In the absence of rigorous answers to the above questions, let us illustrate the above material
with an elementary example, namely the Haar system associated to the Fibonacci chain3.
The scaling functions are just the normalized characteristic functions of large tile and short
tile respectively:

φL(x) = 1I[0,1](x) φS(x) = τ 1/21I[0,1/τ ](x). (4.1)

The scaling equations read in the present case:

φL(x) = φL(τ 2x) + φL(τ
2x − 1) + τ−1/2φS(τ

2x − 2) (4.2)

φS(x) = τ 1/2φL(τ
2x) + φS(τ

2x − 1). (4.3)

Their Fourier transforms are given in the matrix form:

8̂(ξ) =
(
τ−2(1 + e−2π iξ/τ 2

) τ−5/2e−4π iξ/τ 2

τ−3/2 τ−2e−2π iξ/τ 2

)
8̂

(
ξ

τ 2

)
≡ M0

(
ξ

τ 2

)
8̂

(
ξ

τ 2

)
. (4.4)

One choice of mother wavelets inW0 is then given by

ψL(x) = 1√
2τ
(φL(τ

2x) + φL(τ
2x − 1))−

√
2φS(τ

2x − 2) (4.5)

ψS(x) = φL(τ 2x)− τ 1/2φS(τ
2x − 1) (4.6)
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or, equivalently after Fourier transform,

9̂(ξ) =
( τ−5/2√

2
(1 + e−2π iξ/τ 2

) −√2τ−2e−4π iξ/τ 2

τ−2 −τ−3/2e−2π iξ/τ 2

)
8̂

(
ξ

τ 2

)
≡ M1

(
ξ

τ 2

)
8̂

(
ξ

τ 2

)
. (4.7)

We are grateful to Z Maśakov́a, R V Moody and E Pelantová for useful information and
suggestions.
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